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Abstract 

 South Florida resource management, particularly the Everglades restoration effort, is 

beginning to consider projections of precipitation from multiple climate models for decision-

making. Because precipitation changes can significantly affect the Everglades ecosystem, 

characterization of precipitation projection uncertainty is important for resource management 

decisions, and reduction of uncertainty is desired for better decision-making. Though uncertainty 

of precipitation projections has been characterized for many regions, uncertainty has not been 

sufficiently quantified for south Florida. This study builds upon prior results for projected 

Florida precipitation by considering recent climate model simulations, seasonal and spatial 

information, and uncertainty quantification and reduction. We identify the multi-model mean 

change in south Florida precipitation and characterize the uncertainty of 37 statistically 

downscaled Coupled Model Intercomparison Project Phase 5 models. For 2019−2045, there is a 

likely (over 60% of ensemble members) increase in south Florida annual mean precipitation 

owing to a likely to very likely (near 90% of ensemble members) increase in dry season 

(November, December, January) precipitation, while wet season (June, July, August) shows a 

more likely than not (over 50% of ensemble members) decrease in precipitation in the southern 

region and increase in precipitation in the northern region of south Florida. As south Florida 

agencies are on the verge of including precipitation projections in their upcoming planning 

horizon, this information will aid south Florida climate data users in decisions influenced by 

future rainfall. 
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1. Introduction 

 Uncertainty is inherent in all climate studies. The quantification and communication of 

that uncertainty represents a step forward in bridging the gap between climate scientists and the 

climate-data user community. As the Florida Everglades and its ecosystem can be significantly 

impacted by precipitation changes, resource managers desire information concerning the 

potential direction of projected change, associated uncertainty, and if this uncertainty can be 

reduced (Aumen et al., 2015; Estenoz and Bush, 2015). Here, we identify uncertainty of 

precipitation projections for south Florida across time and space scales. Our study area is the 

land-points within latitude 25.0°N to 28.8°N and longitude 277.7°E to 280.1°E, which includes 

the South Florida Water Management District and the greater Everglades (Fig. 1a).  

 Historical and projected climate are principally depicted as the multi-model mean 

(MMM), sometimes considered the most likely result (e.g. Tebaldi and Knutti 2007), but the 

MMM does not provide a quantitative measure of likelihood. Estimates of uncertainty are often 

desired for robust decision making; higher uncertainty reduces confidence in results (Asefa and 

Adams, 2013). Vavrus et al. (2015) depict a framework for describing the uncertainty of climate 

projections that ranges from simple to complex, depending on the needs of the user. We utilize a 

similar framework, including metrics such as the coefficient of variation (COV), percent of 

models agreeing on the sign of the projected change (a measure of robustness), and 

bootstrapping to estimate confidence intervals. 

 Uncertainty in climate models stems from three sources: model; scenario; and uncertainty 

surrounding the internal variability of the climate system (Hawkins and Sutton, 2009). Model 

uncertainty arises from incomplete representation of physical and dynamical processes and how 

these processes interact in climate models. For south Florida, the coarse grid-size of climate 

models necessitates parameterization of small-scale convective processes important for 

precipitation, adding to uncertainty (Obeysekera et al., 2015). Scenario uncertainty arises from 

uncertainties about the future of global emissions. Internal variability uncertainty results from 

processes that can constructively or destructively interfere, for a short period of time, with long-
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term trends associated with anthropogenic climate change, for example, variability associated 

with the El Niño Southern Oscillation (ENSO). Downscaling of climate projections (Mearns et 

al., 2014), sometimes necessary for projections to be relevant at local scales (Wilby and Fowler, 

2010), can also add uncertainty or error (Pielke and Wilby, 2012). However, it may be possible 

to reduce model uncertainty by identifying a subset of models of relatively higher integrity (e.g. 

Brekke et al. 2008). The term “uncertainty” is loosely used in this manuscript to represent 

confidence of downscaled CMIP5 models in their estimation of the MMM change. Effectively, 

this characterization probes model uncertainty. The characterization methods used here are 

focused mainly on model agreement (agreement among models, not including observations), and 

allow for a mathematical representation of this element of uncertainty. We also qualitatively 

assess scenario uncertainty by comparing and contrasting the model agreement in the different 

CMIP5 scenarios, allowing us to identify, for example, scenarios that show relatively good 

model agreement. This uncertainty quantification framework does not probe the existence of 

uncertainty related to internal variability, or uncertainty introduced through the downscaling 

procedures used. Though uncertainty due to internal variability is not directly addressed in this 

manuscript, we note that internal climate variability is a significant contributor to the total 

uncertainty in climate projections, particularly in near-term projections (Fatichi et al., 2016; 

Peleg et al., 2019). The goal of the uncertainty quantification is to provide a clear mathematical 

representation of the degree of confidence the models have in their representation of the change 

in precipitation (given the various climate change scenarios). We foresee that climate data users 

can use this mathematical representation of uncertainty to better inform their decisions. 

 While climate models have inherent uncertainties, there are many other sources of 

uncertainty in decision-making related to, for example, the quantitative uncertainties of impact 

models, ecological models, and biophysical responses. Moreover, there are substantial 

uncertainties associated with how people perceive and respond to climate models, even though 

related social science has been targeting this deficiency (e.g. National Research Council 1999). 

Finally, even given large uncertainty, climate models may still be useful to stakeholders – 
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provided the stakeholder needs are incorporated from the beginning (Polsky et al., 2007; 

Schröter et al., 2005). As uncertainty in climate projections is carried forward into these other 

areas, reduction of climate projection uncertainty may be desirable (Wilby and Dessai, 2010). 

We assert that by including additional information on model uncertainty along with discussion, 

this manuscript serves to better inform decision makers and climate data users who require 

precipitation projections. 

2. Background and Motivation 

 A 2008 National Research Council review of Everglades restoration planning (National 

Research Council, 2008) noted that climate change should be factored into restoration planning, 

suggesting that planners pay attention to six areas that can impact Everglades restoration 

practices. These areas include (1) changes in the water budget and variability including the 

amount, temporal distribution, and seasonality/frequency of precipitation; (2) changes in return 

frequency and intensity of hurricanes/tropical storms; (3) temperature changes and implications 

to the ecosystem (4) consequences of increasing carbon dioxide on plants, carbonate sediments, 

and soil; (5) management practices to keep pace with sea level rise; and (6) impacts of projected 

sea level rise on estuaries, saltwater intrusion, and mangroves (summarized in Aumen et al., 

2015). Though some work on precipitation changes has been completed (discussed below), this 

manuscript focuses on the first area of this review and provides information on the seasonality of 

precipitation changes and uncertainty. 

Changing precipitation can lead to significant impacts on the Everglades ecosystem 

(Aumen et al., 2015). Decreasing rainfall (estimated as a 10% decrease based on data from the 

Coupled Model Intercomparison Project Phase 3, CMIP3, Obeysekera et al. 2015) can lead to 

losses in carbon- and organic-associated elements in the Everglades (Orem et al., 2015), 

significant decrease in Lake Okeechobee water levels (Havens and Steinman, 2015), lowered 

marsh water depths and shortened inundation periods (Nungesser et al., 2015), interannual water 

level changes that may lead to changes in vegetation types (van der Valk et al., 2015), and 

negative impacts on wildlife such as alligators and wading birds (Catano et al., 2015). However, 

This article is protected by copyright. All rights reserved.



7 

in terms of the water supply, an increase in rainfall could be handled given existing features 

(Obeysekera et al., 2011a). The estimation of + or – 10% rainfall change was first discussed in 

Obeysekera et al., (2011b), and is based on a reliability ensemble average (Tebaldi et al., 2005) 

that combines multi-model ensembles into a single probabilistic projection for a region. This 

assessment showed monthly precipitation changes in Florida for CMIP3 scenarios falling 

roughly between -10 to 10%. These rainfall estimations were based on one single probabilistic 

estimation using CMIP3 and do not include information about seasonal changes, which would 

benefit many of these ecological and hydrological studies (Havens and Steinman 2015; 

Obeysekera et al. 2015).  

CMIP5 is the principal climate model suite for the Intergovernmental Panel on Climate 

Change (IPCC) Fifth Assessment Report (Solomon et al., 2007). However, many users desire 

high-resolution regional climate data (Jayantha Obeysekera et al., 2011), and downscaling is 

often applied to achieve that goal (e.g. Giorgi et al. 2001). There have been many downscaling 

efforts in Florida - a recent example is the statistical Self Organizing Map (SOM) method 

employed by the Pennsylvania State University to downscale CMIP5 precipitation over Florida 

and the mid-Atlantic region (Ning et al., 2012, 2011). Here, we use statistically downscaled 

CMIP5 Climate and Hydrology Projections (Brekke et al. 2013). 

Probabilistic information on precipitation changes and trends have been studied 

comparatively less for CMIP5 than for CMIP3 downscaled projections in Florida. Obeysekera et 

al. (2015) determined that a projected change of +/- 10% in annual precipitation is a suitable 

estimated range for 2060 based on CMIP3. Dessalegne et al. (2016) studied Bias-Corrected 

Constructed Analogue (BCCA) CMIP5 statistically downscaled precipitation and air temperature 

projections and found that projected precipitation climatology was biased wet compared to 

observations by about 8% for the period 2000-2085. Here, we specifically discuss statistically 

downscaled CMIP5 data uncertainty characterization seasonally and spatially.  

3. Data and Methods 

3.1  Data 
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The public archive of "Downscaled CMIP3 and CMIP5 Climate and Hydrology 

Projections" (Brekke et al. 2013) is the source of climate data for this study, and we consider 

CMIP5. A CMIP5 overview can be found in Taylor et al. (2011). Data are downscaled using 

BCCA (daily data) and Bias-Corrected Spatial-Disaggregation (BCSD, monthly data) 

methodologies (Wood et al., 2004). For the United States, the downscaled grid resolution is 

0.125° latitude by 0.125° longitude. Daily and monthly historical climate model output for 1950–

2005 and projected for Representative Concentration Pathway 2.6 (RCP2.6), RCP4.5, RCP6.0, 

and RCP8.5 for 2005–2100 are included in the public archive for 37 climate models with varying 

ensemble members. RCPs are discussed in detail in Moss et al. (2010). We have chosen to use 

BCCA and BCSD data here as they both use a similar strategy for bias correction, eliminating 

the need for a formal comparison of downscaling methods and their biases over south Florida. 

An alternative downscaling methodology for daily data using localized constructed analogues 

(LOCA) is also available and may result in better representation of extremes than BCCA. As this 

manuscript mainly details the MMM change and does not specifically focus on extremes, we do 

not expect these biases will significantly affect the results. However, future work involving 

precipitation extremes may benefit from use of the LOCA dataset.  

Each of the downscaled models includes a varying number of ensemble members. Model 

information can be found in Supplementary Material. We refer to these data collectively as 

realizations for brevity. Historical and RCP4.5 include 70 realizations, RCP2.6, 6.0 and 8.5 

include 52, 34, and 62 realizations, respectively. Equal weight is assigned to each model and 

ensemble member. To date, this study incorporates the largest amount of available downscaled 

data compared to other studies in south Florida, allowing for a more complete representation of 

the uncertainty about the MMM and establishment of a complete baseline measurement. For 

daily assessment, we consider only RCP4.5 and 8.5 due to data size. To estimate biases in the 

climate model output, we use observed Climate Prediction Center Unified Gauge-Based Analysis 

of Daily Precipitation over the continental United States, available on a 0.25° latitude and 
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longitude grid (Chen et al., 2008). We re-grid these data to 0.125° latitude by 0.125° longitude 

using bilinear interpolation.  

The term “observations” describes observations of precipitation from 1974-2000;  

“historical” describes model runs forced by observed atmospheric composition changes 

reflecting anthropogenic and natural sources. “Future projections” are forced with specified 

concentrations corresponding to varying levels of emissions (RCPs). We define the near-, 

middle-, and long-term future as 2019−2045, 2046−2072, and 2073−2099, respectively.  

3.2  Statistical Methods 

Future precipitation changes are defined relative to historical model data from 

1974−2000. The uncertainty quantification framework detailed in Vavrus et al. (2015) is used 

here for the region in Fig. 1a, and is intended to provide multiple measurements of uncertainty 

that can be used in a decision-making arena. Uncertainty is assessed using COV, model 

robustness, and bootstrapping estimation of confidence intervals (e.g. Vavrus et al. 2015). The 

COV is the inter-model standard deviation divided by the MMM change, and it measures the 

degree of agreement between models or realizations. This measure is subjective, lower values 

indicate lower uncertainty and vice versa and can be used, for example, to assess if a certain 

region within the domain is more or less certain than another. Robustness is calculated as the 

percent of realizations that agree on the sign of the change, assessed using a likelihood scale; 

e.g., more likely than not represents robustness as 50% to 100%, likely as 66% to 100%, and 

very likely as 90% to 100% (Mastrandrea et al., 2011). Robustness also measures the degree of 

agreement between models or realizations but is less subjective. The likelihood scale is intended 

to aid in comprehension of the percentages associated with robustness. Bootstrapping estimation 

of confidence intervals around the mean and trend (5% and 95%) is used for formal probabilistic 

assessment (e.g., Efron 1992). The population of projected changes or trend is randomly 

subsampled with replacement to generate 1000 possible realizations of the MMM. Readers who 

are interested in more detailed explanations of these measures are encouraged to view the above 

references. 
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Changes in wet season statistics such as the length of the wet season (LOWS) and start 

and end date also are informative for many purposes (Selman et al., 2013). To calculate the 

LOWS and its start and end date, we follow Liebmann et al. (2007) and Misra and DiNapoli 

(2013). The authors define cumulative anomalous daily rainfall A’m(N) as: 

𝐴𝐴𝑚𝑚′ (𝑁𝑁) = ��𝑅𝑅𝑚𝑚(𝑛𝑛)− 𝑅𝑅
¯
𝑚𝑚�

𝑁𝑁

𝑛𝑛=1

 

Where 𝑅𝑅𝑚𝑚(𝑛𝑛) is daily rainfall on day n and m year, n is day number starting on day 1 and 

ending on day N (January 1st through December 31st), and 𝑅𝑅
¯
𝑚𝑚 is annual average daily rainfall. 

The rainy season is the period with the largest and longest positive slope of 𝐴𝐴′𝑚𝑚() . The 

beginning of the rainy season corresponds to the first occurrence when A’m(N) is above the 

annual mean, and the ending begins when anomalous accumulation is at its maximum. For 

further information, refer to Misra and DiNapoli (2013). 

4. Results 

4.1 Bias 

Residual biases in model output present after the application of downscaling are 

classified to determine suitability of the data for this study, suggested by many studies involving 

climate model output (e.g., Stamm et al. 2014; Obeysekera et al. 2015). Biases over Florida in 

large-scale and downscaled CMIP3 model output have been extensively studied (Obeysekera et 

al., 2011; Obeysekera et al., 2015). Biases over Florida in CMIP5 have been studied 

comparatively less. Moreover, because the bias correction strategies were developed with the 

intent of using them across the globe, some of the issues facing south Florida precipitation, such 

as convective-scale processes, are not specifically corrected. 

We depict seasonal climatology and the LOWS for observations, the MMM, and 

individual realizations in Fig. 1b,c (study area shown in Fig. 1a). Biases are very low by design 

due to correction through the downscaling procedure. In a first order estimation, the realizations 

are able to capture observed seasonal climatology and the LOWS because the observations fall 
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within the range of realizations, though we note an overestimation of wet season precipitation in 

Fig. 1b. The LOWS in RCP4.5 and historical BCCA output (Fig. 1c) is longer than observed. 

The observed LOWS is 130 days, while the average historical BCCA LOWS is 135 days 

(ranging from 125 to 145 days across models). The increased LOWS may explain the BCCA wet 

bias reported by Dessalegne et al. (2016). Convective-scale precipitation is also misrepresented 

in large-scale models due to their coarse resolution (e.g. Delworth et al., 2011), adding to the 

biases here. We also spatially assess the climatology and variability biases over the study area, 

shown simply as the difference between the BCSD ensemble mean and observations (Fig. 2). 

Overall, climatological biases fall between -1 and 1, though the highest bias is near the transition 

between the urban area of Florida and the Everglades, likely due to slightly differing 

climatologies in these two regions, which is difficult to capture in a coarse resolution model and 

is not fully corrected through the downscaling procedure. Similar to the regional mean bias (Fig. 

1b), winter (November-January, NDJ) biases are small (Fig. 2b) while summer (June-August, 

JJA) biases are larger overall (Fig. 2c), again owing to the slight bias in the length of the wet 

season and convective precipitation errors. We also note biases in precipitation variance in (Fig. 

2d-f). The winter and summer variance biases have a similar structure to the climatological bias 

(Fig. 2b-c and e-f), though the annual mean is larger (Fig. 2a). We believe that these larger biases 

in the annual mean are due to a general overestimation of annual precipitation variability in the 

models, though this is not seen in the NDJ and JJA shown here, it is seen in other seasons (not 

shown).  

Despite these slight biases, we assume that the models’ ability to simulate historical 

climate will translate into ability to simulate projected climate (e.g. Brekke et al. 2008), and that 

the data are appropriate for this study. As the downscaling procedure assumes stationarity, biases 

in future data will be similar, though this assumption can be problematic as there could be shifts 

in the climatology under climate scenarios (Dixon et al., 2016). Models can also suffer from 

biases related to large-scale fields, ocean-model resolution, etc., and this simple metric does not 

encompass all impacts to precipitation (Kirtman et al., 2012). 
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4.2  Projected Changes and Uncertainty 

 We assessed the annual mean, NDJ, and JJA MMM change for 2019-2045. The 

remaining periods and their uncertainty, calculated by bootstrapping, are summarized in 

Supplementary Material Table S1. NDJ and JJA are defined as the wet and dry seasons, 

respectively, following Irizarry-Ortiz et al. (2013). These seasons may not be appropriate for all 

climate data users in south Florida but can still provide guidance. Our goal is to further refine the 

+/- 10% precipitation change range based on CMIP3 (Obeysekera et al. 2015). 

The annual mean percent change and change in mm/day for 2019−2045 versus 

1974−2000 is computed for RCPs 4.5, 8.5 (Fig. 3a,d). Precipitation is projected to increase, with 

smaller changes in the southern part of the domain and larger changes in the northern part, and 

projections significantly differ from historical precipitation (stippling, based on a t-test at the 

95% confidence level, where the null hypothesis is that the 2019-2045 mean does not 

significantly differ from 1974-2000). The near-term percent change is projected to be roughly 

2% - 5% (shading), or about 0.1 to 0.15 mm/day (contours) for both RCPs, though again we note 

the presence of internal variability in the near-term. The COV (Fig. 3 b,e) and robustness (Fig. 3 

c,f) estimates indicate more certainty in the northern part of the domain (low COV and high 

robustness). Robustness is over 60% throughout the domain, i.e. characterized as “more likely 

than not” to “likely” to occur.  

One might assume that the RCP with the strongest forcing (RCP8.5) would project the 

largest response, but RCP4.5 and 8.5 are roughly equal. Scenario differences are not an 

important contributor until later decades (Hawkins and Sutton, 2011), though RCPs incorporate 

differences in other trace gasses that can lead to slight differences in RCPs (Kirtman et al., 

2013). A positive change in precipitation agrees dynamically with what we might expect in a 

warming climate, because a warmer atmosphere can hold more water. This result also agrees 

with the “wet get wetter” and the “dry get drier” notion of precipitation change in a warming 

climate (Stocker, 2014). Though the “wet get wetter” and “dry get drier” notion typically refers 

to extreme precipitation, it is also associated with convective rainfall (Lepore et al., 2015), which 
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makes up a large part of south Florida rainfall variability. However, increased heating also can 

lead to greater evaporation, surface drying, a net soil moisture deficit and decreasing 

precipitation (Trenberth, 2011).  

 Results for NDJ indicate a positive, significant change in precipitation across the region 

(Fig. 4 a,d). NDJ results are similar to, though larger than, the annual mean, and are similarly 

robust, classified as “more likely than not” to “likely” (Fig. 4 c,f). However, the largest and most 

certain changes are seen in the southern part of the domain (Fig. 4 b,e). As shown in Table S2, 

RCP6.0 shows a smaller percent change in the near-term and is not significant with a much 

larger range (change of about 5% compared to about 12% for the other RCPs, with a range 

spanning zero in the confidence interval). We are more confident in the results from RCP4.5, 8.5 

due to relatively smaller uncertainty and higher robustness. Though RCP differences are not seen 

in the near-term, RCP6.0 includes a smaller amount of realizations that have a wider range than 

the remaining RCPs, causing the differences here.  

JJA differs from the annual mean and NDJ in that it shows a smaller percent change of 

approximately +/- 3%, equating to about +/- 0.2 mm/day, and a negative-to-positive gradient 

(Fig. 5a,d). Because projected change is negative in the southern part of the domain, this 

seasonality is likely affecting the near-term annual mean and causing the southern decreased, but 

still positive, precipitation (Fig. 3a,d). Held and Soden (2006) note that the global change pattern 

includes migration of storm tracks towards the poles, producing more rain at higher latitudes and 

reducing frontal passages over Florida, leading to less rainfall. Lee et al. (2010) and Rauscher et 

al. (2010) presume that Caribbean summer drying (including south Florida) is related to 

differential ocean-warming in the tropical Indo-Pacific and increased static stability along with 

decreased convection over the tropical North Atlantic. While the negative (positive) changes in 

the southern (northern) part of the domain show some robustness in the “more likely than not” 

category (Fig. 5 c,f), the transition line is respectively more uncertain based on the COV (Fig. 5 

b,e). Noticeably in the COV is a band of high uncertainty roughly across the center of the 

domain. This is due to the nature of the calculation of the COV, which is based on the inter-
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model standard deviation divided by the MMM change. The division by the MMM change 

causes the measurement to “blow up” for MMM changes nearing zero, and weaker changes are 

typically more uncertain than stronger changes. However, we note that the location of this zero-

line is highly uncertain given results from individual realizations (not shown).  

 Temporal projected changes in precipitation are evaluated by computing the MMM 

percent change relative to 1974-2000 and trend for 2019-2099 with confidence around the MMM 

trend estimated by bootstrapping for the domain indicated in Fig. 1a (Fig. 6). Significance of the 

trend is estimated using a Mann-Kendall test, and p-values are noted on Fig. 6 (over 0.95 

indicates significance). Results are as expected for the annual mean, NDJ, and JJA given the 

above discussion, and all trends are significant (Fig. 6 a-f). A negative trend is found in annual 

mean RCP8.5 (Fig. 6 b) related to decreasing precipitation at the end of the time period. 

However, the percent change from 2019 – 2099 is typically above zero. Scenario differences are 

a key player in this downward trend, as this roughly corresponds to when scenario uncertainty 

dominates (Hawkins and Sutton, 2011), and the annual mean may also reflect the large negative 

change in JJA 2073 - 2099 in RCP8.5 (Table S1). 

 Changes in the near-term wet season characteristics are assessed and agree conceptually 

with the above (Fig. 7). RCP4.5, 8.5 show a robust decrease in the LOWS over most of the 

domain (Fig. 6a,b,c,d). The wet season is projected to be drier, whereas the beginning of the dry 

season is projected to be wetter (Fig. 7e). More than 60% of realizations show decreasing wet 

season precipitation and increasing precipitation in the beginning of the dry season (changes are 

“likely”, Fig. 7f). The wet season is projected to start later but end at about the same time. The 

average wet season start dates in historical, RCP4.5, and 8.5 are June 3, June 7, and June 10, 

respectively. The end dates are October 17, October 17, and October 19, respectively. These 

results agree with observations; the observed wet season has experienced later start dates, leading 

to a general decrease (increase) in wet (dry) season precipitation (Irizarry-Ortiz et al., 2013). We 

do not expect that this shift in the start of the wet season is enough to alter the timing of wet and 

dry seasons significantly for the near-term. 
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 We assert that from a user standpoint, this additional information and quantification of 

model uncertainty will increase confidence in the results. However, here we have included all 

possible models/realizations without attempt to determine model weights, best model 

combinations, or model credibility. It is an open research question on how best to combine 

and/or cull the models. Brekke et al. (2008) forms a credible set of models based on regionally 

relevant climate variables such as the mean, variance, and correlation with NINO indices, etc. 

Model weighting, i.e. weighting models in which we have higher confidence than others based 

on statistical assessment, is another method that may have merit (Sanderson et al., 2017). The 

‘Emergent Constraint’ on the Equilibrium Climate Sensitivity (ECS) technique from Cox et al. 

(2018) focuses on the variability of temperature about the long-term warming in a scenario that 

assumes the atmospheric carbon dioxide (CO2) concentration is instantly doubled, which 

reduced uncertainty compared to the IPCC likely ranges. Decadal predictions may also hold 

some ability in better quantifying the near-term uncertainty range (Meehl et al., 2009). Finally, 

high-resolution global models may better represent physical processes leading to regional 

rainfall, reducing added uncertainties due to downscaling (Siqueira and Kirtman, 2016).  

5. Concluding Remarks 

 In this manuscript, we build upon results from Obeysekera et al. (2011a) and Dessalegne 

et al. (2016) by adding uncertainty characterization spatially, temporally, and across RCPs in 

statistically downscaled CMIP5 precipitation data over south Florida. While climate projections 

have many sources of uncertainty related to scenario, model, and internal variability, the results 

presented here characterize the uncertainty surrounding the MMM change, or model uncertainty. 

In addition, we use these uncertainty calculations to dismiss one of the scenarios due to higher 

uncertainty, thus qualitatively decreasing the uncertainty surrounding scenarios. Internal 

variability uncertainty and uncertainty added during the downscaling process are not sampled 

here. We find four conclusions associated with the emphasis on model uncertainty in downscaled 

projections of Florida precipitation: 
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1. 2019-2045 annual mean precipitation is projected to increase (likely), with more 

uncertainty in the southern part of the domain. 2019-2099 spatial MMM changes 

range from 1.5% to 6.3% (0.05mm/day to 0.23mm/day) (Table S2). RCP4.5 has 

an increasing trend, and RCP8.5 has a decreasing trend owing to 2080-2099. 

2. 2019-2045 NDJ precipitation is projected to increase (likely to very likely), with 

results from RCP6.0 showing greater uncertainty. 2019-2099 domain-average 

MMM change ranges from 11.7% to 21.5% (0.2mm/day to 0.37mm/day) (Table 

S2), with a positive trend in RCP4.5 and 8.5. 

3. 2019-2045 JJA precipitation is projected to decrease in the southern part of the 

domain and increase in the northern part (more likely than not to likely). The 

location of the transition from dry to wet is highly uncertain. 2019-2099 domain-

average MMM change ranges from -9.1% to 2.0% (-0.55mm/day to 0.12mm/day) 

(Table S2) with a negative trend.  

4. The LOWS is projected to decrease in RCP4.5 (more likely than not) and RCP8.5 

(likely), due to a later start. The wet season is projected to get drier (likely) and 

dry season wetter (likely). 

Climate models do not represent the full spectrum of uncertainty because they are not 

exhaustive of all factors impacting future emissions and may be missing sources of uncertainty 

such as Gulf Stream variability, which acts on spatial scales finer than many global climate 

models currently resolve (i.e. Siqueira and Kirtman 2016). Internal variability in the near-term 

can also impact these changes (Fatichi et al., 2016). Changes to large-scale modes of variability 

such as ENSO, the Pacific Decadal Oscillation (PDO), and the Atlantic Multi-Decadal 

Oscillation (AMO) under climate change scenarios may impact Florida teleconnections (Oh et 

al., 2014); and while ENSO is fairly well simulated in climate models, the PDO and AMO may 

represent another source of bias or uncertainty (Fuentes-Franco et al., 2016; Ruiz-Barradas et al., 

2013). In addition, statistical downscaling methods and the bias identification utilized in this 

manuscript have the inherent assumption of stationarity, i.e. that the future biases will be the 
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same as past biases. While this is a common assumption in climate projection studies, it is 

problematic because future climate is then viewed as anomalous about the current climate, and 

the current climate may shift in a changing climate. This uncertainty is not addressed in this 

manuscript. However, we assert that we have included a sufficient number of models to sample 

the diversity within the given RCP and provide a baseline assessment of uncertainty. Our future 

goal is to formulate a more credible set of models for projections of Florida precipitation, rather 

than including all possible models and realizations in the assessment. 

As noted in the section on Motivation and Background, a National Resource Council 

study recommended Everglades resource planners factor in climate change, including the amount 

of precipitation and temporal distribution such as seasonality and frequency (Aumen et al., 

2015). Precipitation changes can impact the Everglades ecosystem (Aumen et al., 2015; 

Obeysekera et al., 2015). Havens and Steinman (2015) note that information on potential spatial 

and seasonal distribution of rainfall changes and associated uncertainties would be of 

considerable benefit for climate data users. For example, substantially increased wet season 

precipitation could overwhelm flood capabilities of Lake Okeechobee, while decreased dry 

season precipitation could impact downstream water supplies. As the Everglades ecosystem may 

react differently given seasonal and spatial changes, we emphasize that these results will act to 

increase credibility in the direction of projected change across space and time for climate data 

users working in south Florida and Everglades restoration. This manuscript is intended to 

provide scientific background pertaining to future precipitation changes and uncertainty; we do 

not provide specific management recommendations. We envision these results can be used by 

planners to more adequately determine seasonality of precipitation changes and their uncertainty, 

leading to more informed decisions about infrastructure to capture, store, clean, and deliver water 

at the right times and right places (Estenoz and Bush, 2015). The uncertainty and seasonality 

information about potential precipitation changes is highly sought after by Everglades scientists 

and managers, and high levels of scientific uncertainty do not lead to a lack of management 

decisions. More information, however, can lead to better informed decisions. While we do not 
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recommend any particular RCP over another for impact assessment at this time, a potential 

direction for future study is considering which scenarios produce significant end-member 

changes in the Everglades ecosystem. 

We note that climate projections are based on conditional assumptions about changes in 

external forcing. RCPs are created with assumptions about the future state of economics and 

society, and are they intended for use as plausible trajectories of different aspects of the future 

(van Vuuren et al., 2011). For example, RCP8.5 assumes a future with increasing emissions 

(similar to a “Business as Usual” scenario), whereas RCP4.5 assumes a future with still 

increasing emissions, but an overall decrease compared to a business as usual approach. 

Scenarios are not meant to be a prediction of the future but intend to aid in better understanding 

of uncertainties and alternative futures (Moss et al., 2010). This research represents a step 

forward in characterization of the structural uncertainty associated with precipitation projections 

over south Florida, leading to development of new ways of reducing uncertainty. Ultimately, we 

hope that this research will be useful for resource managers in the area of Everglades restoration 

and other resource management activities in south Florida.  
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Figure Captions 
 
Fig. 1  Comparison of downscaled bias-corrected spatial dissagreggated (BCSD) and 
bias-corrected constructed analogue (BCCA) data with observations. All values in mm/day. (a) 
Study Area, represented by small box on the left hand side, showing south Florida. The larger 
region is provided for context and ease of understanding.  (b)  Seasonal mean climatology. (c)  
Length of the wet season (LOWS). RCP=Representative Concentration Pathway.  
 
Fig. 2  Comparison of downscaled bias-corrected spatial dissagreggated (BCSD) data 
with observations.(a) – (c) BCSD annual mean, November – January (NDJ) mean, and June – 
August (JJA) ensemble and temporal mean minus corresponding temporal mean observations. 
Values in mm/day. (d) – (f) as in (a) – (c) but for BCSD variance minus corresponding observed 
variance. Unitless. 

Fig. 3  Near-term projected change in annual-mean precipitation and associated 
uncertainty for 2019-2045 compared to 1974-2000. (a) Multi-Model Mean (MMM) percent 
change (shading), MMM change in mm/day (contours), significance of difference based on a t-
test at 95% confidence level (stippling) for RCP4.5. (b) RCP4.5 coefficient of variation (COV, 
unitless). (c)  Robustness (%). (d)-(f) as in (a)-(c) but for RCP8.5. RCP=Representative 
Concentration Pathway. 

Fig. 4  As in Fig. 2, but for November–January (NDJ). MMM=Multi-Model Mean, 
COV=Coefficient of Variation, RCP=Representative Concentration Pathway; NT=Near Term. 
 
Fig. 5  As in Fig. 2, but for June-August (JJA). MMM=Multi-Model Mean, 
COV=Coefficient of Variation, RCP=Representative Concentration Pathway; NT=Near Term. 
 
Fig. 6  Multi-Model Mean (MMM) change in precipitation (blue line, %), trend (black 
dashed line, %/yr), and uncertainty about the trend calculated by bootstrapping at 5% and 95% 
confidence levels (light blue shading, %/yr). Mean trend and confidence intervals based on 
bootstrapping and p-values based on a Mann-Kendall test are shown in the top right of the 
panels. (a) Annual mean RCP4.5. (b) Annual mean RCP8.5. (c) and (d) as in (a) and (b), but for 
November-January (NDJ). (e) and (f) as in (a) and (b) but for June-August (JJA). 
RCP=Representative Concentration Pathway. 

Fig. 7  (a) Length of the wet season (LOWS) for near-term (NT) RCP4.5 minus historical 
in number of days. Brown indicates decreasing LOWS, and green indicates increasing LOWS. 
(b) as in (a) but for RCP8.5. (c) RCP4.5 robustness of the LOWS change (negative change only, 
%). (d) as in (c) but for RCP8.5. (e) Spatial mean accumulated precipitation anomaly (mm/day) 
for multi-model mean (MMM) RCP4.5 minus historical (blue), RCP8.5 minus historical (red), 
and RCP4.5 minus historical (gray). (f) Percent of realizations depicting a positive (green) or 
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negative (brown) change in accumulated precipitation for RCP4.5 (%). RCP=Representative 
Concentration Pathway. 
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Fig. 1  Comparison of downscaled bias-corrected spatial dissagreggated (BCSD) and bias-corrected 
constructed analogue (BCCA) data with observations. All values in mm/day. (a) Study Area, represented by small box 
on the left hand side, showing south Florida. The larger region is provided for context and ease of understanding.  (b)  
Seasonal mean climatology. (c)  Length of the wet season (LOWS). RCP=Representative Concentration Pathway. 
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Abstract 

 South Florida resource management, particularly the Everglades restoration effort, is 

beginning to consider projections of precipitation from multiple climate models for decision-

making.  For 2019−45, there is a likely increase in south Florida annual mean precipitation 

owing to a likely to very likely increase in dry season (November, December, January) 

precipitation, while wet season (June, July, August) shows a more likely than not decrease in 

southern precipitation and increase in northern precipitation.  

 
 

This article is protected by copyright. All rights reserved.




